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Abstract - We apply a line-integral formulation to the 
Hybrid Mode-Matching/FEM Technique for the analysis of 
discontinuities with waveguides of arbitrary cross-section. 
The line-integral formulation is used instead of standard 
surface integrals, not only for the evaluation of coupling 
integrals but also for normalization integrals computation. In 
this way a noticeable advantage is gained in terms of 
numerical efficiency, particularly when accurate solutions are 
sought for. Numerical examples validate the proposed 
approach. 

method, by comparison with the standard surface integrals 
approach. Finally, Sec. 6 reports the conclusions. 

The field components of a general cylindrical 
waveguide, can be expressed in terms of the Hertz-type 
potentials q (for TE modes) and v  (for TM modes), as 
follows: 

I. IN-I-R~DUCTION 

The Mode-Matching (MM) efficiency makes this 
technique widely used for the analysis of waveguide 
discontinuities. As shown in [l] a complete line-integral 
formulation of MM, instead of standard surface integrals, 
leads to an even more efficient implementation of this 
technique. On the other hand, MM is of limited flexibility, 
since typically it applies to waveguides of separable cross- 
section for which modal expansion of electromagnetic 
fields are analytically available. An Hybrid MM/FEM 
technique has been proposed in [2] for the analysis of 
discontinuities with waveguides of arbitrary cross section; 
this technique combines the computational efficiency of 
modal analysis with the versatility and flexibility of the 
FEM approach. Furthermore, the use of edge elements in 
the FEM region, as suggested in [3], allows to achieve 
accurate results. 

In this paper we apply the line-integral formulation to 
the hybrid MMIFEM technique showing that this 
formulation presents a significant numerical advantage. 
We use the line-integral formulation not only for the 
coupling integrals but also for the normalization integrals. 
In addition, a great care is exerted in the choice of the 
edge elements to be employed in the FEM region. 

where: a, is the normal unit vector being z the 
propagation axis, Zt, the scalar wave impedance, p the 
propagation constant, k, the cutoff wavenumber and Y, the 
scalar wave admittance. 

Referring to Fig. 1 and using (1) and (2), the following 
formulas for the coupling and the normalization integrals 
can be derived [ 11: 

The paper is organized in the following way: after a 
brief recall of the line-integral formulation of Mode- 
Matching technique (Sec. 2), the FEM 2D chosen 
formulation is presented (Sec. 3). The formulas to apply 
line-integral formulation to the hybrid MMfFEM 
technique are then given (Sec. 4). Two examples (Sec. 5) 
show the accuracy and the advantages of the proposed 

Coupling integrals: 
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II. LINE-INTEGRAL, FORMULATION OF MM TECHNIQUE 
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Normalization integrals: 

IH, . H,dS = -+$I”‘” dc (TE Modes) (6) 
s c aflak, 

IE, *E,dS=$-$$$dc (TMModes) (7) 
s C c 

Fig. 1 A general waveguide discontinuity 

IILFEM2D FOR~IULATION 

Different formulations for the Finite Element Analysis 
of waveguides have been proposed in the literature [4]. 
We have chosen to implement the two dimensional 
“Standard Formulation” [5] that uses the 3 components of 
the magnetic field. It is able to cope with situations where 
E and l.r both vary within the waveguide profile, it allows 
the analysis of waveguides having sharp reentrant comers 
and, thanks to the use of appropriate “edge elements”, it 
doesn’t present spurious modes. 

The magnetic field is splitted into its transverse and 
longitudinal components, B = H, + H,g, , that are 
evaluated by means of the following expressions: 

/I, = 2htizj h, = 2h,aj (8) 
jZ j=l 

where N,’ vector interpolation functions z (edge 

elements) and Ninodal interpolation functions 01 are to 

be associated 

- jH, =h,. 

with an element, b, =H,Pand 

Imposing the tangential continuity and using the 
Galerking weighted residual method the electromagnetic 
problem is transformed into the problem represented by 
the following system matrix equation: 

Alp-k,ZB~,+~2C~, +P2Dh, =o 

EII, - k;F&, + CT h, = 0 
(9) 

that may be written as: 

where the matrices [A] to [F] are the global matrices 
achieved assembling element by element starting from the 
matrices related to each individual element n, [5]. 

The solution of (10) gives the eigenvalues ks and the 
coefficients h, and h, of the magnetic field expansions (8). 
From the knowledge of ks the cut-off wavenumber k, can 
be derived: in fact, the TE and TM modes in a lossless and 
air-filled waveguide satisfy the dispersion relation: 

k,z--cip)2=k; (11) 

A great care must be exerted in the choice of the .vector 
and nodal interpolation functions, z and ~1. 

Concerning the edge elements, 2, they come in various 
forms [6,7]. A very good accuracy and efficiency can be 
achieved by using the so called Linear Tangential, 
Quadratic Normal (LT/QN) basis functions, that in 
simplex coordinate form may be written as follows [S]: 

7, = 1,;lzva, 

7, = I,A,Vil, 

z, = l,a$q 
z, =r,aJ~ (12) 

7, = 1,a,va, 

7, = 1,a2q 

‘7 = c7,hA2vh - c72n,&3vA2 

‘8 = c8,4a2vn, - c82A2&v4 

where fi are the lengths of the edges, /ti the simplex 
coordinates associated with the nodes and ~71, ~72, csi and 
cg2 are normalization constants. 

Also for the nodal interpolation functions a, a good 
trade-off between accuracy and complexity is represented 
by 2*d order functions. Their expressions are: 
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-c,,@% -do----c7*(4c~ -c,4)jy an 

a, = 4AJ3 (17) 

as = a, (2il, - 1) 

N,’ and N,’ in the (8j are then equal to 8 and 6, 

avxr, a4 an, -=cg,(b3c* -Cjb2)-+C8*(b,C2 -c,bz)-- 
an an an 

respectively. 

IV. APPLICATION~FL~-JNTEGRALF~RMULA~ON To 
MM/FEM TECHNIQUE 

In order to use the formulas from (3) to (8), the 
potentials Cp (for TE modes) and II/ (for TM modes) 
have to be expressed in terms of the transverse or the 
longitudinal components of the magnetic field. 

For the TE modes from (1) and (8) one derives: 

where T is the number of the edges of the triangles on the 
boundary and C the normalization constant. 
Hence, 

where q, bi and ci (i=1..3) are the coefficients to convert 
the Cartesian coordinates to the simplex coordinates [5]. 

In order to use the formulas (6) and (7), we apply the 
following expression that gives the Hertz-type potentials 
of the TE and TM modes versus the kc 

(p(k,,x,y)= q( ++) (18) 
where It, is the cut-off wavenumber of the various modes 
of the waveguide. 

The formula (18) derives from the consideration that the 
cut-off wavenumbers are inversely proportional to the 
section size; furthermore, the potential in any point of a 
section has the same value of the potential in the 
corresponding point of another section with the same 
shape but different size. 
From (18) it can be obtained: 

aq Similarly for z . 

For the TM modes from (2) and (8) one obtains: 

Hence, for example, in the TE case we have: 

$V~~,x,~)~(x,y)=~~.~,‘~(‘)Vai .(x,Y) 
c c n 

P =- cc (I[( 
cn i 

h, i - aai,% .(x,y)+ 
a4 

WI ihi aa. +an,V& l w+aa3 L v;l, . (x, Y) (20) 

av Only V x Z, and V X Z, contribute to - . 
an 
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V. NUMERICAL RESULTS 

To validate the proposed approach, we have considered, 
the examples of a WR75 rectangular waveguide connected 
both with an elliptical waveguide and with a double ridge 
waveguide. We have evaluated the Sl 1 of these structures 
with the Hybrid MM/FEM technique with line-integrals 
formulation as well as with the surface integrals’ 
formulation. We have compared the results with those’ 
achieved. by means of the commercial tool HFSS (by1 
Ansoft) and, for the first structure, by means of a pure MM 
tool [9]. 

The Sl 1 results are shown in Fig. 2 and Fig. 3 for the 
first and the second example, respectively. In the figures 
FEM 2D IL and FEM 2D IS mean Hybrid MM/FEM 
technique with line integrals formulation and Hybrid 
MM/FEM technique with surface integrals formulation, 
respectively. 
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Fig. 2 S11 in the case of WR75/Elliptical discontinuity 
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Fig. 3 Sl 1 in the case of WR75Double Ridge discontinuity 

We have meshed the FEM region with 1073 triangles in 
the elliptical waveguide case and with 2 100 triangles in the 
double ridge example. 

In both the examples we have considered 20 Modes in 
the rectangular waveguide region and 16 modes in the 
FEM region. 

The simulation time required by the Hybrid MM/FEM 
technique with line integrals formulation was 50% less 
than the one required with the surface integrals 
formulation. As can be seen from Fig. 2 and Fig. 3, a very 
good accuracy has been achieved. 
1 This accuracy together with the advantage in terms of 
simulation time demonstrates the effectiveness of the 
proposed approach. 

VI. CONCLUSION 

The application of the line-integral formulation to the 
hybrid MMIFEM technique has been proposed. As 
demonstrated in Sec. 5, this formulation, together with a 
careful choice of the edge elements within the FEM 
region, is advantageous for the analysis of discontinuities 
with waveguides of arbitrary cross section, leading to a 
very efficient MM/FEM technique implementation. 
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