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Abstract — We apply a line-integral formulation to the
Hybrid Mode-Matching/FEM Technique for the analysis of
discontinuities with waveguides of arbitrary cross-section.
The line-integral formulation is used instead of standard
surface integrals, not only for the evaluation of coupling
integrals but also for normalization integrals computation. In
this way a noticeable advantage is gained in terms of
numerical efficiency, particularly when accurate solutions are
sought for. Numerical examples validate the proposed
approach.

I. INTRODUCTION

" The Mode-Matching (MM) efficiency makes this
technique widely used for the analysis of waveguide
discontinuities. As shown in [1] a complete line-integral
formulation of MM, instead of standard surface integrals,
leads to an even more efficient implementation of this
technique. On the other hand, MM is of limited flexibility,
since typically it applies to waveguides of separable cross-
section for which modal expansion of electromagnetic
fields are analytically available. An Hybrid MM/FEM
technique has been proposed in [2] for the analysis of
discontinuities with waveguides of arbitrary cross section;
this technique combines the computational efficiency of
modal analysis with the versatility and flexibility of the
FEM approach. Furthermore, the use of edge elements in
the FEM region, as suggested in [3], allows to achieve
accurate results.

In this paper we apply the line-integral formulation to
the hybrid MM/FEM technique showing that this
formulation presents a significant numerical advantage.
We use the line-integral formulation not only for the
coupling integrals but also for the normalization integrals.
In addition, a great care is exerted in the choice of the
edge elements to be employed in the FEM region.

The paper is organized in the following way: after a
brief recall of the line-integral formulation of Mode-
Matching technique (Sec. 2), the FEM 2D chosen
formulation is presented (Sec. 3). The formulas to apply
line-integral formulation to the hybrid MM/FEM
technique are then given (Sec. 4). Two examples (Sec. 5)
show the accuracy and the advantages of the proposed

method, by comparison with the standard surface integrals
approach. Finally, Sec. 6 reports the conclusions.

II. LINE-INTEGRAL FORMULATION OF MM TECHNIQUE

The field components of a general cylindrical
waveguide, can be expressed in terms of the Hertz-type
potentials @ (for TE modes) and ¥ (for TM modes), as
follows:
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where: @, is the normal unit vector being z the
propagation axis, Zy the scalar wave impedance, B the
propagation constant, k. the cutoff wavenumber and Y, the
scalar wave admittance.

Referring to Fig. 1 and using (1) and (2), the following
formulas for the coupling and the normalization integrals
can be derived [1]:

" Coupling integrals:
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Normalization integrals:
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Fig. 1

A general waveguide discontinuity

III. FEM 2D FORMULATION

Different formulations for the Finite Element Analysis
of waveguides have been proposed in the literature [4].
We have chosen to implement the two dimensional
“Standard Formulation” {5] that uses the 3 components of
the magnetic field. It is able to cope with situations where
€ and p both vary within the waveguide profile, it allows
the analysis of waveguides having sharp reentrant corners
and, thanks to the use of appropriate “edge elements”, it
doesn’t present spurious modes.

The magnetic field is splitted into its transverse and
longitudinal components, H =H, +H,a,, that are
evaluated by means of the following expressions:

N
h, = Zhﬂj

Nf
h=Yha, ®
Jj=1 j=1

where N vector interpolation functions T (edge
elements) and N nodal interpolation functions o are to
h,=H Band

be associated with an element,

—jH,=h,.

Imposing the tangential continuity and using the
Galerking weighted residual method the electromagnetic
problem is transformed into the problem represented by
the following system matrix equation:

Ah,—k;Bh,+B*Ch, + B*Dh, =0 )
Ehz —ng.}}.z +CT.}.1.{ =0

that may be written as:

22 STl ] o
cr E A, 0 Fjh,

where the matrices [A] to [F] are the global matrices
achieved assembling element by element starting from the

matrices related to each individual element €, [5].

The solution of (10) gives the eigenvalues ko and the
coefficients h, and h, of the magnetic field expansions (8).
From the knowledge of k, the cut-off wavenumber k. can
be derived: in fact, the TE and TM modes in a lossless and
air-filled waveguide satisfy the dispersion relation:

k2 -(iBY =k; )

A great care must be exerted in the choice of the vector
and nodal interpolation functions, T and o.

Concerning the edge elements, T, they come in various
forms [6,7]. A very good accuracy and efficiency can be
achieved by using the so called Linear Tangential,
Quadratic Normal (LT/QN) basis functions, that in
simplex coordinate form may be written as follows [8]:

T, =LA, VA,
T, =LA, VA,
T3 =LA VA,
7, =L,A,VA, 12)
Ts =LA VA,
T, =LA, VA,

T, = AV, —c,hA VA,
Ty = ,lexle}“s —-cpA, A VA

where {; are the lengths of the edges, A; the simplex
coordinates associated with the nodes and cy;, ¢7,, cg; and
Cg, are normalization constants.

Also for the nodal interpolation functions o, a good

trade-off between accuracy and complexity is represented

by 2™ order functions. Their expressions are:
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N and N;
respectively.

in the (8) are then equal to 8 and 6,

IV. APPLICATION OF LINE —INTEGRAL FORMULATION TO
MM/FEM TECHNIQUE

In order to use the formulas from (3) to (8), the
potentials @ (for TE modes) and ¥ (for TM modes)
have to be expressed in terms of the transverse or the
longitudinal components of the magnetic field.

For the TE modes from (1) and (8) one derives:
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where T is the number of the edges of the triangles on the
boundary and C the normalization constant.
Hence,
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For the TM modes from (2) and (8) one obtains:
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where a;, b; and ¢; (i=1..3) are the coefficients to convert
the Cartesian coordinates to the simplex coordinates [5).

In order to use the formulas (6) and (7), we apply the
following expression that gives the Hertz-type potentials
of the TE and TM modes versus the kc

k. ,x,
olk.,x y)= ‘P[ -

k., k,
=X, = J’] (18)

c kC y
where K, is the cut-off wavenumber of the various modes
of the waveguide.

The formula (18) derives from the consideration that the
cut-off wavenumbers are inversely proportional to the
section size; furthermore, the potential in any point of a
section has the same value of the potential in the
corresponding point of another section with the same
shape but different size.

From (18) it can be obtained:

qu _==V(p(k—c’x’y).(xay) ‘(19)

C

Hence, for example, in the TE case we have:
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V. NUMERICAL RESULTS

To validate the proposed approach, we have considered-

the examples of a WR7S5 rectangular waveguide connected

" both with an elliptical waveguide and with a double ridge
waveguide. We have evaluated the S11 of these structures
with the Hybrid MM/FEM technique with line-integrals
formulation as well as with the surface integrals’
formulation. We have compared the results with those’
achieved by means of the commercial tool HFSS (by
Ansoft) and, for the first structure, by means of a pure MM
tool [9].

The S11 results are shown in Fig. 2 and Fig. 3 for the
first and the second example, respectively. In the figures
FEM 2D IL and FEM 2D IS mean Hybrid MM/FEM
technique with line integrals formulation and Hybrid
MM/FEM technique with surface integrals formulation,
respectively.
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Fig. 2 S11 in the case of WR75/Elliptical discontinuity
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Fig. 3 Si1 in the case of WR75/Double Ridge discontinuity

We have meshed the FEM region with 1073 triangles in
the elliptical waveguide case and with 2100 triangles in the
double ridge example. ’

In both the examples we have considered 20 Modes in
the rectangular waveguide region and 16 modes in the
FEM region.

The simulation time required by the Hybrid MM/FEM
technique with line integrals formulation was 50% less
than the one required with the surface integrals
formulation. As can be seen from Fig. 2 and Fig. 3, a very
good accuracy has been achieved.

This accuracy together with the advantage in terms of
simulation time demonstrates the effectiveness of the
proposed approach.

VI. CONCLUSION

The application of the line-integral formulation to the
hybrid MM/FEM technique has been proposed. As
demonstrated in Sec. 5, this formulation, together with a
careful choice of the edge elements within the FEM
region, is advantageous for the analysis of discontinuities
with waveguides of arbitrary cross section, leading to a
very efficient MM/FEM technique implementation.
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